Skip to main content

Prerequisites

Before you begin, you’ll need:
  • A free API key (get one instantly - click “Get API Key”)
  • Python 3.8+, Node.js 18+, or Java 17+
Test keys (rv_test_*) are free and include 100 requests/day. No credit card required.

Installation

Install the Rotavision SDK for your preferred language:
pip install rotavision

Initialize the Client

from rotavision import Rotavision

client = Rotavision(api_key="rv_live_...")

# Or use environment variable ROTAVISION_API_KEY
client = Rotavision()

Your First API Call

Let’s analyze a model prediction for fairness using Vishwas:
# Analyze fairness of a loan approval model
result = client.vishwas.analyze(
    model_id="loan-approval-v2",
    dataset={
        "features": ["age", "income", "credit_score", "gender", "location"],
        "predictions": predictions,
        "actuals": actuals,
        "protected_attributes": ["gender", "location"]
    },
    metrics=["demographic_parity", "equalized_odds", "calibration"]
)

print(f"Fairness Score: {result.overall_score}")
print(f"Bias Detected: {result.bias_detected}")

for metric in result.metrics:
    print(f"  {metric.name}: {metric.value:.3f} ({metric.status})")

Example Response

{
  "id": "analysis_abc123",
  "model_id": "loan-approval-v2",
  "overall_score": 0.82,
  "bias_detected": true,
  "metrics": [
    {
      "name": "demographic_parity",
      "value": 0.78,
      "threshold": 0.80,
      "status": "warning",
      "affected_groups": ["location:rural"]
    },
    {
      "name": "equalized_odds",
      "value": 0.91,
      "threshold": 0.80,
      "status": "pass"
    },
    {
      "name": "calibration",
      "value": 0.85,
      "threshold": 0.80,
      "status": "pass"
    }
  ],
  "recommendations": [
    {
      "severity": "medium",
      "message": "Rural applicants have 22% lower approval rate despite similar creditworthiness",
      "action": "Review feature weights for location-correlated variables"
    }
  ],
  "created_at": "2026-02-01T10:30:00Z"
}

Next Steps